
CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 1

Q.1 a. What are the differences between C++ and JAVA?
Answer:
 The following are the differences between C++ and JAVA:-

C++ JAVA
1. In C++ goto, sizeof and typedef
statements are included.

1. In JAVA, goto, sizeof and typedef
statements are not included.

2. It uses pointers. 2. Java doesn’t use pointers.
3. In C++ we may have functions that are
not attached to classes.

3. In java, all functions including main, are
attached to classes.

4. In C++, garbage collection is done by the
programmer only.

4. In Java, garbage collection is done
automatically.

5. It does not produce bytecodes that for
every java program that is executed.

5. It produces bytecodes that for every java
program that is executed, which is also
platform independent.

 b. Write a JAVA program to find the first m numbers of the Fibonacci

 series.
Answer:

import java.io.*
class fibo
 {
 public static void main(String args [])
 {
 try
 {
 DataInputStream dis = new DataInputStream(System.in);
 try
 {
 System.out.print(“Enter the value of m:”);
 String str = dis.readLine();
 int m = Integer.parseint(str);
 Int f1 = 1, f2 = 1, f;
 System.out.print(“Fibonacci series is as follows:”);
 for(int i=1; i<=m; i++)
 {
 if((i==1) || (i==2))
 System.out.print(f1+ “ ”);
 else
 {
 f = f1 + f2;
 f1 = f2;
 f2 = f;
 System.out.print(f+ “ “);
 }
 }

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 2

 }
 Catch(NumberFormatException e)
 {
 System.out.println(“wrong input data:”);
 }
 }
 Catch(Exception e)
 {
 }
 }
 }

 c. What is method overloading in JAVA? Give an example to explain.
Answer:

Method overloading is used when a programmer intends to create several
methods that perform closely related tasks. The following example explains
this:-

Class Sample
{
 public int abs(int a)
 {
 if (a < 0)
 a = -a;
 return a;
 }
public float abs(float b)
 {
 if (b < 0)
 b = -b;
 return b;
 }
public double abs(double c)
 {
 if (c < 0)
 c = -c;
 return c;
 }
Thus, we have three abs () methods here. At the time of compilation, the
compiler resolves that which version of the abs() must be called depending
on the parameter type passed.

 d. Distinguish between interfaces and abstract classes.
Answer:

Differences between interfaces and abstract classes are as follows:-

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 3

1. An abstract class is an incomplete class that requires further specialization. An
interface is just a specialization or prescription for the promised behavior.

2. A class can implement several interfaces at once whereas a class can extend only
one parent class.

3. An abstract class is generally used where you want to initiate a hierarchy of more
specialized classes. On the other hand, an interface is used where you say-“I need
to be able to call methods with these signatures in your classes”.

4. Interfaces can be used to support callbacks also.

 g. With an example show how values can be passed to applets?
Answer:

The PARAM tag is used to pass values to your applet. It is placed between
<APPLET> and </APPLET> tag. The PARAM tag has two arguments—
NAME and VALUE. The NAME argument specifies the name of the
parameter and the VALUE defines its value.

Q.2 a. What is type casting in JAVA? Explain its various types with suitable
 examples.

Answer:
 The process of converting one data type to another data type is known as
 type casting. It is of two types:-

1. Implicit Casting: It means simply assigning one entity to another without
any transformation guidance to the compiler. It may not work for all
application scenarios.

For e.g. int t= 100;
 long h = t; //implicit casting

2. Explicit Casting: It means very specifically informing the compiler about
the transformation that is expected.

 For e.g. long h = 100.00;
 t = (int) h; //explicit casting

 But in the following example, the compiler throws an exception:-
 int t = 100;
 long h = t; //implicit casting
 int t=100;
 long h = t; //implicit casting
 t = h;

This will give an error. This is so because ‘t’ is int type and size of ‘t’ is less size
 of ‘h’. So, we cannot put long into int.

The following conversions however are allowed in java:-

 byte (8-bits) to short, int, long, float, double.
 short (16-bits) to int, long, float, double.
 int (32-bits) to long, float, double.
 long (64-bits) to float, double.

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 4

 b. Write a simple program that finds the largest of two numbers where the
 two numbers are read from the keyboard.

Answer:
 import java.io.*

 class large
 {
 public static void main(String args [])
 {
 try
 {
 DataInputStream din = new DataInputStream(System.in);
 int a,b;
 System.out.print(“Enter your first number: “);
 a = Integer.parseInt(din.readLine ());
 System.out.print(“Enter your second number: “)
 b = Integer.parseInt(din.readLine ());
 if (a > b)
 System.out.print(“First number is greater than second number”);
 else
 System.out.print(“second number is greater than first number”);
}
Catch(Exception e)
{

}

 }
 }

Q.3 a. What is the order of calling constructors in JAVA?
Answer:
When an object is created it calls the default constructor. When we create an object of the
subclass, it automatically calls the super class constructor prior to the subclass
constructor. For e.g.
 Class First
 {
 First()
 {
 System.out.println(“First Constructor”);
 }
 }
Class second extends First
 {
 Second ()
 {
 System.out.println(“Second constructor”);
 }

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 5

 }
Now when we create an object of Second class as follows:-
 Second s = new Second ();
It will invoke the constructor of the class First and then the constructor of the class
Second and displays the following result:-
 First Constructor.
 Second Constructor.

 b. Explain different access specifiers in JAVA?
Answer:
 Access specifiers in JAVA are given in a tabular form below:-

Access Public Protected Default(Friendly) Private Private
Protected

From the
same class

Yes Yes Yes Yes Yes

From any
class in
same
package

Yes Yes Yes No No

From any
class
outside the
package

Yes No No No No

From ma
subclass in
the same
package

Yes Yes Yes No Yes

From a
subclass
outside
package

Yes Yes No No Yes

 c. Explain the following with an example:-

i. Final data member.
ii. Final method.

iii. Final class.
iv. Final object.

Answer:
i. Final data member
 When we declare a data member as final then it means that its value

cannot be changed. For e.g.
final float pi = 3.14f;
final int i=10;
final char status=’y’;

ii. Final method

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 6

 When we declare any method as final in java then it means that it
 cannot be overridden in its subclasses. For e.g.

 final void decrement ()
 {
 //…….
 }

iii. Final class
 A final class cannot be inherited at any cost. The function of a final class
 is just reverse of an abstract class. For e.g.
final class classname
 {
 //……
 }

iv. Final object
 The final object is a constant object and it must be initialized to an

object at the point of declaration. The final object cannot be changed
to point to another object.

Q.4 a. Why do we use import statement?
Answer:
Import statement in JAVA
Java package can be used in a program by using import statement. Its syntax is as
follows:-
 import PackageName.*; //importing an entire package PackageName
 import PackageName.ClassName; //importing a class ClassName from package

//PackageName
For example,
 import java.awt.*;
 import java.awt.Button;

Here, a dot separates an element. Thus, a hierarchy has been followed while creating
these in-built packages. The first import statement imports all the classes or interfaces of
the awt package. The second statement imports Button class from the awt package. After
importing the above package, we can create an object of the Button class as :-

 Button b = new Button(“yes”);

 b. Write a java program to show how interfaces can be extended in Java?
Answer:
 Like classes, interfaces can also be extended. It means that an interface can be
 subinterfaced from other interfaces. The new subinterface will inherit all the
 members of the super interface. The syntax is as follows:-
 interface SubInterfaceName extends SuperInterfaceName
 {
 //……..
 }

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 7

Let us give an example now.
interface first
{
 void show1();
}
interface second extends first
 {
 void show2 ();
}
class third implements second
 {
 public void show1 () //implementing first interface method declaration.

{ System.out.println(“First interface method.”);
}

 public void show2 () //implementing second interface method declaration.
{ System.out.println(“Second interface method.”);
}

 }
Class ExtendInterfaceDemo
 {
 public static void main(String args[])
 {
 third t = new third ();
 t.show1 ();
 t.show2 ();
 }
 }
OUTPUT:
 First interface method.
 Second interface method.

Q.5 a. List some common java exceptions and explain.
Answer:
 Common JAVA exceptions are as follows:-

1. The ArithmeticException: This exception is thrown when an exceptional
arithmetic condition such as division by 0, encounters.

2. The ArrayOutOfBoundsException: This exception is thrown when an attempt
is made to access an array element beyond the arry index.

3. The NullPointerException: This exception is thrown when you try to use null
where an object is required. For example, if you try to call a method on an object
which is just declared, not created, it throws this exception.

4. The NumberFormatException: This exception is thrown when you attempt to
perform an invalid conversion of a string to a number format.

5. The StringIndexOutOfBoundsException: This exception is thrown when you
try to attempt to an index outside the bounds of a string.

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 8

6. The InterruptedException: This exception is thrown when one thread interrupts
another thread.

 b. Give an example of a program in java to show how you can create your
 own exception classes?

Answer:
To create your own exceptions we extend the Exception class. The extended class
contains constructors, data members and methods like any other class. The throw and
throws keywords are used when implementing user-defined exceptions.
// own exceptions creation program
Class MyException extends Exception
 {
 MyException ()
 {
 }

 MyException (String str)
 {
 super(str);
 }
}

Class UserException
 {
 public static void main(String args[])
 {
 try
 {
 show();
 }

 catch(MyException e)
 {
 System.out.println(e.getMessage());
 }
 try
 {
 display ();
 }
 catch (MyException e)
 {
 System.out.println(“e.getMessage());
 }
 }
static void show () throws MyException
 {

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 9

 System.out.println(“Throwing my own exception from show()”);
 throw new MyException ();
}

static void display ()throws MyException
 {
 System.out.println(“throwing my own exception…”);
 throw new MyException(“Originated in display ()”);
}
}

Q.6 a. What do the following methods do:-
 i) wait().
 ii) notify ().
 iii) notifyAll ().

Answer:
 i) wait ()
 The wait () method makes a thread in waiting state.

ii) notify ()
 The notify () wakes up the first thread that called wait() on the same object.

iii) notifyAll ()
 This method wakes up all threads that are waiting on the same object.

 b. Differentiate between Applications and Applets.
Answer:
Let us tabulate the differences between the two:-

Applications Applets
1. Application programs use main()
method for initiating the execution of the
code.

1. Applets donot use any main () method.

2. These programs can run independently. 2. Applets donot run independently. They
run embedded into a web page on a web
browser using HTML tags.

3. These can read from or write to the files
on a local computer.

3. These cannot read from or write to the
files on a local computer.

4. These can run some other program from
the local computer.

4. These cannot run some other program
from the local computer.

5. Java language can use libraries of other
languages like C and C++ using native
method.

5. Applets are restricted from using
libraries from other languages.

Q.7 a. Write a JAVA program to create three simple sliders—plain slider, slider

with tick marks and a third one with both tick marks and sliders.
Answer:
//slider program in java
Import javax.swing.*;

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 10

Public class JSliders extends JFrame{
 Public static void main(String[] args){
 New JSliders();
}
Public JSliders(){
 Super(“Using JSlider”);
 //comment out next line for java look-and-feel
 WindowUtilities.setNativeLookAndFeel();
 addWindowListner(new ExitListner());
 Container content = getContentPane();
 Content.setBackground(Color.white);

JSlider slider1 = new JSlider();
Slider1.setBorder(BorderFactory.createTitledBorder(“JSlider without Tick Marks”));
Content.add(slider1, BorderLayout.North);

JSlider slider2 = new JSlider();
slider2.setBorder(BorderFactory.createTitledBorder(“JSlider with Tick Marks”));
slider2.setMajorTickSpacing(20);
slider2.setMajorTickSpacing(5);
slider2.setPaintTicks(true);
content.add(slider2, Borderlayout.CENTER);

JSlider slider3 = new JSlider();
Slider3.setBorder(BorderFactory.createTitledBorder(“JSlider with Tick Marks”));
Slider3.setMajorTickSpacing(20);
Slider3.setMajorTickSpacing(5);
Slider3.setPaintTicks(true);
Slider3.setPaintLabels(true);
content.add(slider3, Borderlayout.SOUTH);

pack();
setVisible(true);
}
}

 b. Show with an example program how inheritance is supported by beans.
Answer:
//Inheritance by beans
public class Subject1BeanInfo extends SimpleBeanInfo {
 private final static Class myClass = Subject1.class;
 public PropertyDescriptor[] getPropertyDescriptions ()
 {

 try{
 PropertyDescriptor maximumStudents = new

PropertyDescriptor(“maximumStudents”, myClass);

CT21 OOPS USING JAVA ALCCS-FEB 2014

© IETE 11

PropertyDescriptor numberOfStudents = new
 PropertyDescriptor(“numberOfStudents”, myClass);

PropertyDescriptor foreground = new PropertyDescriptor(“foreground”,
myClass);

PropertyDescriptor background = new PropertyDescriptor(“background”,

myClass);
PropertyDescriptor name= new PropertyDescriptor(“name”, myClass);

foreground.setHidden(true);
background.setHidden(true);
name.setHidden(true);
PropertyDescriptor[] properties = {maximumStudents,

numberOfStudents,foreground, background,name};
return properties;
}

catch(IntrospectionException e) {
 e.printStackTrace();
}
return null;
}

 }

Text Books

1. Cay Horstmann-Computing Concepts with Java 2 Essentials, John Wiley, 3rd Edition

2. E. Balagurusamy- Programming with Java: A Primer, 3rd Edition, 2006, Tata McGraw-
Hill

